মহাকাশযানটি কোথায় এখন?

অবস্থানের ফাংশন

এখন যেহেতু কো-অর্ডিনেট সিস্টেম আর ভেক্টর সম্পর্কে মোটামুটি ধারনা পেয়েছো, এবার আসো দেখাযাক অক্ষের কেন্দ্র থেকে মহাকাশযানটির দূরত্ব কিভাবে একক ভেক্টর ও অবস্থানের ফাংশনের মাধ্যমে প্রকাশ করা যায়।

বোঝার সুবিধার জন্য মনেকরো, তুমি মহাকাশযানটি শুধুই x-অক্ষ বরাবর একটি সরল রেখা ধরে উড়াচ্ছো । এবার অক্ষরেখার কেন্দ্র থেকে তা যতটুকু দূরত্ব অতিক্রম করেছে সেই পর্যন্ত একটি ভেক্টর আকলাম। যেহেতু ভেক্টরটি মহাকাশযানটির অবস্থান নির্দেশ করছে, তাই একে বলবো অবস্থান ভেক্টর এবং এই ভেক্টরটির নাম দিলাম $\vec{r}$। মহাকাশযানটি যতক্ষন উড়বে, অক্ষের কেন্দ্র থেকে তার দূরত্ব তত বাড়তে থাকবে। সুতরাং সাথে সাথে ওই ভেক্টর $\vec{r}$ এর দৈর্ঘ্যও বাড়তে থাকবে।
position vector
ছবিঃ ২.১  

যেহেতু ভেক্টরটি সময়ের সাথে সাথে বাড়ছে, এজন্য অবস্থান ভেক্টরটিকে সময়ের ফাংশন $\vec{r}(t)$ হিসাবে লিখতে পারি। একদম শুরুতে যখন তুমি মহাকাশযানটি চালানো শুরু করোনি তখন $\vec{r}(t) = 0$, এবং সময় বাড়ার সাথে সাথে মহাকাশযানটি x-অক্ষ বরাবর ধনাত্মক দিকে যেতে থাকবে, কাজেই তোমার অবস্থান ভেক্টর হবে $\vec{r}(t)=x(t)\hat{i}$। কিন্তু যদি মহাকাশযানটিকে ঘুরিয়ে উল্টো দিকে রওনা দাও, তাহলে ফাংশনটি ঋণাত্মক দিকে দূরত্ব অতিক্রম করবে অর্থাৎ অবস্থান ভেক্টরটি হবে $\vec{r}(t)=-x(t)\hat{i}$। সুতরাং আমরা তিনটি ঘটনা দেখতে পাচ্ছি, মহাকাশযানটি $x(t)\hat{i}=0$ হলে, মহাকাশযানটি আগের যায়গায় দাঁড়িয়ে আছে, $x(t)\hat{i}>0$ হলে মহাকাশযানটি $x$ অক্ষ বরাবর এগিয়ে যাচ্ছে আর $x(t)\hat{i}<0$ হলে মহাকাশযানটি দিক পরিবর্তন করে উল্টো দিকে যাচ্ছে।

লক্ষ্য করোঃ সাধারন ভেক্টরগুলির উপর $\vec{arrow}$ আর একক ভেক্টরগুলিকে মাথার উপরে একটি $\hat{hat}$-চিহ্ন দিয়ে প্রকাশ করা হচ্ছে।
এভাবে x-অক্ষ বরাবর একক ভেক্টরকে নির্দেশ করবো $\hat{i}$ $\hat{i}$ এর উচ্চারণ i hat । অনেক জায়গায় একে $\hat{x}$ বা $\hat{e_i}$ দিয়েও প্রকাশ করা হয়। দিয়ে, y-অক্ষ অক্ষ বরাবর একক ভেক্টরকে নির্দেশ করবো $\hat{j}$ $\hat{j}$ এর উচ্চারণ j hat । অনেক জায়গায় একে $\hat{y}$ বা $\hat{e_j}$ দিয়েও প্রকাশ করা হয়। দিয়ে, আর z-অক্ষ বরাবর একক ভেক্টরকে নির্দেশ করবো $\hat{k}$ $\hat{k}$ এর উচ্চারণ k hat । অনেক জায়গায় একে $\hat{z}$ বা $\hat{e_k}$ দিয়েও প্রকাশ করা হয়। দিয়ে।


সরণ

মহাকাশযানটি যখন এক বিন্দু হতে আরেকটি বিন্দুতে পৌছাচ্ছে, তখন সেই বিন্দু দুটির মধ্যেকার ভেক্টরকে আমরা সরণ বলবো।
মহাকাশযানটি কোথায় এখন? মহাকাশযানটি কোথায় এখন? Reviewed by Dayeen on জুন ১০, ২০২১ Rating: 5
Blogger দ্বারা পরিচালিত.